
Erstellung einer interaktiven
Web-App für

Computergrafik-Themen

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Samo Kolter
Matrikelnummer 11810909

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr. techn. Eduard Gröller

Wien, 28. September 2021
Samo Kolter Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Creating an Interactive Web App
for Computer Graphics Topics

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Samo Kolter
Registration Number 11810909

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr. techn. Eduard Gröller

Vienna, 28th September, 2021
Samo Kolter Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Samo Kolter

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. September 2021
Samo Kolter

v

Kurzfassung

Die Computergrafik ist ein Teilgebiet der Informatik mit, wie die Bezeichnung schon
nahelegt, starkem visuellen Bezug. Oft bedarf es vieler komplexer mathematischer Berech-
nungen, um einen Computer dazu zu bringen, eine visuelle Repräsentation eines Objekts
auf dem Bildschirm darzustellen. Doch glücklicherweise lassen sich viele Algorithmen,
die in der Computergrafik verwendet werden, auch schön veranschaulichen. Das Ziel
dieser Bachelorarbeit war, es Interessierten zu erleichtern, ausgewählte Themen der
Computergrafik mit intuitiver, visueller Unterstützung besser zu verstehen. Der Fokus
lag dabei in erster Linie auf Bézier-Kurven und Verallgemeinerungen davon (konkret
B-Spline- und NURBS-Kurven). Um das Ziel zu erreichen, wurde eine Web-App mit
interaktiven Demos im Zusammenhang mit den genannten Themenbereichen entwickelt.
Diese Demos können mit jedem beliebigen modernen Browser ausgeführt werden.

Existierende Werke in Zusammenhang mit dem Thema der Bachelorarbeit (Publika-
tionen zur Computergrafik-Lehre und dafür verwendete interaktive Tools sowie bereits
existierende interaktive Online-Lehrmaterialien/Demos) werden präsentiert. Ebenso wird
beschrieben, wie das gesammelte Wissen bei der Implementierung berücksichtigt wurde,
und welche Entscheidungen bei der Implementierung getroffen wurden. Details der tech-
nischen Umsetzung werden ebenfalls besprochen. Abschließend werden die im Rahmen
der Bachelorarbeit gesammelten Erfahrungen reflektiert.

vii

Abstract

Computer Graphics is, as the name suggests, a subdomain of Computer Science with
strong relation to visuals. Often a lot of complex math is necessary to make a computer
render a visual representation of something onto the screen. However, in many cases
the algorithms used can also be explained nicely in a very visual manner. The goal of
this Bachelor’s Thesis was to find novel ways to introduce people interested in Computer
Graphics to selected topics, mainly focusing on Bézier Curves and their generalizations
(B-Spline and NURBS curves). To reach this goal, interactive web-based demos that can
be viewed with any state-of-the-art browser were created.

Related existing work is presented (publications on approaches to teaching Computer
Graphics and existing teaching material, as well as learning resources/demos that were
found online). The ways in which the collected knowledge was used when implementing
the demos are described as well as key decisions that had to be made for the concrete
implementation of the web app. Important implementation details are discussed, too.
Finally, an overview of the lessons learnt over the course of the whole project is given.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1

2 Existing Work 3
2.1 Literature Related to Computer Graphics Teaching 3
2.2 Web-based Learning Material Covering Computer Graphics Topics . . 5

3 Demos Created 11
3.1 Introduction to Bézier Curves . 11
3.2 Bézier Curves and Bernstein Polynomials 12
3.3 B-Spline Curves . 13
3.4 NURBS Curves . 14
3.5 Barycentric Coordinates . 15

4 Tech Stack and Tools Used 17
4.1 Node.js and Node Package Manager (npm) 17
4.2 Programming Language: TypeScript 18
4.3 Website Stylesheets with SCSS . 19
4.4 Using Materialize for Website Styles 19
4.5 Bundling Required Resources: Webpack 19
4.6 Rendering the Demos Onto the Screen: p5.js 20
4.7 Mathematical Notation in the Browser: MathJax 21
4.8 Deployment: GitHub Pages . 21

5 Implementation Details 23
5.1 Project Configuration Details . 23
5.2 Typescript Code Written for the Project 26

xi

6 Reflection 31
6.1 Technical Aspects . 31
6.2 General Aspects . 35

7 Conclusion 37
7.1 Summary . 37
7.2 Use Cases for the Web App . 37
7.3 Open Issues/Possible Further Work . 38

Bibliography 39

CHAPTER 1
Introduction

1.1 Motivation

During my bachelor studies of Media Informatics and Visual Computing at TU Wien I
learned many algorithms or abstract mathematical concepts that are commonly applied
in the field of Computer Graphics, Computer Vision, or Computer Science in general.
In many cases, having a look at formal definitions was not sufficient for me to really
understand those concepts. Quite often, some concrete example, or - even better - an
interactive demo (that allowed me to tweak parameters and see the consequences of the
changes in real time) helped solidify my understanding. Since I enjoyed the Computer
Graphics related classes a lot, the idea of creating some demos for certain Computer
Graphics topics came into my mind. However, at this stage the exact goals (topics to
cover, type of interaction, implementation details etc.) were not yet defined.

1.2 Problem Statement

As a search in the academic realm and on the web showed, a significant amount of
interactive, digital teaching material and tools for Computer Graphics already exists (for
details please see Chapter 2). However, an issue especially with older material is that it
is either not available anymore or it does not run on recent hardware.

The main goal of this Bachelor’s thesis was to create learning material explaining
Computer Graphics topics in a novel way. Key requirements were:

1. Interactivity: Encourage active engagement with the topic at hand with interac-
tive features, e.g. allowing consumers of the learning material to change parameters
and see the effects immediately instead of just passively reading about a topic

1

1. Introduction

2. Ease of Access: The material should be available to anyone interested in the
specific topics and not require any additional installation or setup.

3. Gradual Learning Curve: Initially, a high-level overview of the topic at hand
should be provided. Ideally, people completely unfamiliar with the topic should
also be able to grasp the core concepts. Introduce more and more details later.

4. Making the Math Make Sense: Computer Graphics concepts can be expressed
with mathematical definitions and formulas. However, formal definitions are not
always intuitive to people who have never heard about a topic before. If possible,
the learning material should explain why the math makes sense after all.

Web browsers were chosen as the platform to create the learning material. They fulfill
the first two requirements (interactivity and ease of access) very well - a more thorough
discussion can be found in Chapter 6. Interactive demos were created and published on
a publicly available website. Due to time constraints only a few selected topics could
be covered. The demos focus mostly on Bézier curves and generalizations thereof. This
topic was chosen because of personal interest and because it is a sub-topic of geometric
modeling, commonly taught in introductory Computer Graphics classes [1]. A detailed
discussion of the demos follows in Chapter 3.

2

https://sejmou.github.io/interactive-computer-graphics/

CHAPTER 2
Existing Work

Before the interactive demos of this Bachelor’s thesis were created, it was necessary to
get an overview of “what is already there”. To create new learning tools helping as many
people as possible, two main questions had to be answered:

1. What topics are generally most relevant when studying Computer Graphics?

2. What topics were already explained in great detail with existing material?

In this chapter, existing literature related to Computer Graphics education and learning
material is discussed. Recent publications describing new technologies and tools that may
assist learning Computer Graphics are also presented. However, not every useful learning
resource is necessarily directly connected to academia and described in a publication.
Therefore an extensive web search for additional Computer Graphics learning resources
was carried out too.

2.1 Literature Related to Computer Graphics Teaching

2.1.1 Overview of Computer Graphics Education

A look at what is taught at universities in (introductory) Computer Graphics is useful to
understand what topics might be most relevant. Balreira et al. [1] collected information
on Computer Graphics courses of 20 universities. They gathered data based on the
keywords used in the course descriptions. Keywords were repeatedly put into related
clusters, those clusters were then further grouped together in clusters that became more
and more “high-level”. In the final set of topic clusters, Rendering was by far the most
common with 75% of the keywords used in university course descriptions relating to it,
followed by modeling (14%), and animation (7%). Interestingly, in the lower-level clusters

3

2. Existing Work

that the high-level clusters were based on, the topic cluster of geometric modeling ranked
very high with 85% of the examined university course descriptions mentioning it - despite
modeling in general ranking very low among the high-level clusters.

2.1.2 What makes Computer Graphics difficult to teach?

Suselo et al. [2] carried out a systematic review of literature describing tools for teaching
Computer Graphics topics and tried to extract the common key issues that were identified
in it. They found four key factors commonly giving students trouble while trying to
understand Computer Graphics related topics:

1. Insufficient knowledge of mathematics and basic programming

2. Problems understanding transformations, projections, and 3D geometric modeling

3. Problems making the connection between theory, programming, and application

4. Passive learning (lack of interaction with peers and teaching staff)

The authors also mention concrete examples of existing solutions that were used to
mitigate those problems, e.g. e-learning platforms used in classes. They identify three
main approaches to teaching Computer Graphics related topics: bottom-up (starting
with the very basics and building on that), top-down (using a more complex example and
splitting it into smaller, easier to understand modules, often abstracting away low-level
details), and hybrid (a combination of bottom-up and top-down).

2.1.3 Technologies and Tools for Teaching and Learning Computer
Graphics over the Years

A follow-up paper by Suselo et al. [3] looked at publications describing technologies
and tools that are (or were) used to support teaching of Computer Graphics topics.
The researchers state that resources with interactive features (e.g. ability to change
parameters on the fly) provide additional insight compared to text books, static images,
or slides. Teaching and learning material spanning almost three decades was analyzed.
Topics covered by the mentioned learning materials include the graphics pipeline, shading,
and 3D transformations.

Many tools used the OpenGL Graphics API. Often a simpler and more beginner-friendly
graphics API was developed, trying to make graphics programming more accessible to
newcomers. Some tools tried to completely remove the programming aspect and focus
on high-level understanding of algorithms and concepts. For the implementation of most
tools some variant of C or Java was used. Some tools were also implemented as Java
applets that could be run in the browser. The authors also included two tools they
developed themselves (with other colleagues): a mobile app with AR features helping
users to understand 3D transformations [4] and an extension of the CodeRunner plugin

4

2.2. Web-based Learning Material Covering Computer Graphics Topics

for the Moodle e-learning platform, facilitating the creation of interactive exam questions
and practice examples using OpenGL [5].

Unfortunately, not a single one of the 20 teaching tools mentioned in this literature
review was available to be tested. Either no link to the software or website was provided
or the resources simply did not run on state-of-the-art machinery as the technologies
used were outdated. For example, tools developed as Java Applets cannot be used in
any current versions of web browsers as Java Applets are no longer supported [6]. Lack
of compatibility was generally a recurring issue with learning material for Computer
Graphics, both in the tools described in less recent publications and in older interactive
learning material found on the web (described in the following section).

2.1.4 WebGL as the Modern Approach to Teaching Computer
Graphics

Ten years ago version 1.0 of the WebGL standard was released by the Kronos Group [7].
WebGL essentially brought OpenGL to browsers, as it conforms closely to the OpenGL ES
2.0 specification. The WebGL Graphics API is supported by all major browsers, allowing
the rendering of 2D and 3D graphics without any additional libraries [8]. Recently, a few
publications appeared that discuss Computer Graphics learning material using WebGL.
On the basis of an in-depth comparison of WebGL and OpenGL, Angel [9] concludes
that WebGL appears to be more suitable for teaching introductory Computer Graphics.
The main arguments for WebGL are its wide-spread support (it runs on practically any
computer, tablet, or smartphone with a web browser), more modern and easier API, and
the wide-spread availability of additional tools and resources on the web. Angel suggests
that the benefits outweigh the drawbacks of WebGL like the different nature of JavaScript
as the programming language (compared to C, C++ or Java that are traditionally used
with OpenGL) or the need for writing some additional HTML code (that is very similar
for most applications anyway).

WebGL was also mentioned as the technology of choice in recent publications discussing
Computer Graphics learning tools. Pattanaik and Benamira developed a set of interactive
exercises and demos for the web, some of them using WebGL (paper: [10], web link:
[11]). Topics covered include basics of vector algebra and transformations, the WebGL
rendering pipeline, light/reflection models, shading, texture mapping, and post-shader
operations. Rocha et al. also developed a web application utilising WebGL for interactive
demos discussing basics of 3D Computer Graphics (paper: [12], web link: [13]) covering
similar topics.

2.2 Web-based Learning Material Covering Computer
Graphics Topics

Complementary to the search among publications described above, online learning
material for Computer Graphics topics was collected too. To limit the scope of the search

5

2. Existing Work

so that it produces as much useful “inspiration” for creating interactive demos as possible,
a lot of learning material had to be excluded.

The material had to comply with the requirements “interactivity” and “ease of access”
outlined in Chapter 1. For learning material to be considered “interactive”, it should for
example allow consumers to change parameters of a particular demonstration themselves
and see the consequences of those changes in real-time. This means that resources with
only static content (text, formulas, images, and videos) are not included. Resources
hosted on the web that can be accessed via browsers also cater best to the second
requirement (ease of access), therefore only web-based learning material and tools are
part of this list.

Several combinations of Computer Graphics related keywords were used during the search
for resources with Google’s search engine. The collected online resources were then also
tagged with keywords describing what topics they cover. Many different approaches
to teaching could be observed, also the topics are covered in varying degrees of detail.
Some resources only cover a very specific topic with some demo, providing no additional
information, while others are full-fledged tutorial websites trying to teach several related
concepts in a systematic manner using additional interactive elements. This section
covers resources with promising, novel approaches to teaching. A list of all material
collected is also included.

2.2.1 Resources Teaching Basics of Linear Algebra

As the field of linear algebra is particularly important in Computer Graphics, a solid
understanding of its core concepts is essential to anyone interested in Computer Graphics.
Ström et al. created “Immmersive Math” [14], a website teaching the basics of linear
algebra by means of an online textbook with fully interactive figures. Over the course
of 10 chapters, topics including vectors, vector operations, matrices, and matrix oper-
ations/properties are covered. Examples of concrete use cases for the topics described
are also provided. For example, in the chapter discussing vectors, a clone of the classic
game “Breakout” is used to demonstrate vectors in use. Additionally, definitions for
terms used can be viewed quickly by hovering over the words. The website “Interactive
Linear Algebra” created by Margalit and Rabinoff [15] uses a very similar approach to
teaching linear algebra.

2.2.2 Hands-on Approach: Learning Computer Graphics via
Graphics Programming

A more hands-on approach to learning about fundamentals of Computer Graphics is
learning graphics programming, as it applies Computer Graphics concepts. Resources
were found on the web that aim to teach graphics programming in a very systematic
manner, over several chapters. Users following along learn about some new concept
and get the chance to see theory put into practice with live demos implementing those
concepts using a graphics API. Either the demos have some kind of UI that allows

6

2.2. Web-based Learning Material Covering Computer Graphics Topics

changing parameters (sliders, input fields etc.) or the source code is available and can be
modified directly. The linear algebra foundations are provided as needed, but they are
not discussed as thoroughly as in dedicated linear algebra textbooks.

Some websites following this approach were found. An example is “Learn Computer
Graphics using WebGL” created by Wayne Brown [16]. In addition to interactive demos
and source code in many modules, it offers a learning experience that resembles that
of e-learning systems, with multiple choice questions at the end of each module. The
open-source project “WebGL fundamentals”[17] does not explicitly claim to be a course
teaching Computer Graphics, however many topics introduced there are also commonly
taught in introductory Computer Graphics curricula [1]. “Introduction to Computer
Graphics” by David Eck [18] uses OpenGL and Java2D in addition to discussing WebGL
and related technologies (JavaScript and its APIs, HTML Canvas, SVG etc.). The
materials of the “Graphics Programming” lecture at the University of Marburg are also
publicly available (including lecture slides, code examples and interactive demonstrations)
[19]. Examples using a wide variety of tools for graphics programming are provided
(namely OpenGL, WebGL, and the visual programming environment GSN Composer
[20]), however the main focus lies on teaching using OpenGL.

2.2.3 Resources explaining Parametric Curves

Parametric curves are a sub-topic of geometric modeling, a topic that is commonly taught
in introductory Computer Graphics courses [1]. Parametric curves are also discussed in
the Computer Graphics course at TU Wien that I completed during my Bachelor’s studies.
In the lectures, interactive demos [21] implemented as Java Applets are used to showcase
parametric curves and common related algorithms. Unfortunately, the version of the
interactive demos hosted online already does not run on recent browsers. Because of this
fact (and due to my own interest in the topic) the search results for learning materials
include a disproportionate number of demos related to parametric curves. Among this
material, the focus lied mainly on demos covering Bézier curves and their generalizations
(B-Splines, NURBS curves).

Bézier Curves and De Casteljau’s Algorithm

A demo created by Price [22] allows users to understand the workings of De Casteljau’s
algorithm for evaluating Bézier curves in an interactive way. Control points can be
defined at arbitrary positions. If users then move the mouse cursor from one side of the
screen to the other, they can see how the line is drawn. The recursive nature of the
algorithm is shown by drawing additional “mid-point lines and control points” for each
iteration of the algorithm.

Bostock created an Observable notebook covering De Casteljau’s algorithm and its
mathematical definition in greater detail [23]. First, an animated cubic Bézier curve
is displayed, with a visual representation similar to that of the two demos mentioned

7

2. Existing Work

above. Later, however, additional animations and formulas are shown, covering the
mathematical background, too, like a chapter in an interactive textbook.

Madsen created Bézier curve demos in the scope of his “Programming Design Systems”
Course [24]. While the website itself only covers Bézier curves from an end-user/designer
perspective and does not go into the details on how they are rendered by computers,
the demos were still very interesting, as the code used for the demos (created using the
p5.js [25] library) is publicly available on GitHub [26]. The code of those demos was
used as the initial starting point for the Bézier curve demos created in this project. Yet
another Bézier curve demo [27] was also found on the web (utilizing the Desmos Graphing
calculator), however it did not provide additional educational value compared to the
other demos.

B-Splines and NURBS

Fuhr’s interactive web application [28] shows the differences between Bézier curves and
B-Spline curves. The pre-defined control points of a provided cubic Bézier curve and
a B-Spline curve can be moved. The curve parameter, commonly called t or u, can be
modified using a slider. The point on the curve then moves accordingly. Additionally,
the basis functions of each control point are presented. The current influence of each
control point (the value of its blending function) is shown by graph segments and the
radius of a circle that gets bigger the more influence a control point has. An animation
can also be started to increase the parameter at a consistent speed and make it move
along the curve by itself.

Only two web-based demos covering NURBS curves were found. Benton created a demo
[29] showcasing NURBS curves and the basis functions of their control points, as well as
the influence of the knot vector and the control point weights. The parameter p of the
NURBS curve can also be modified. Unfortunately no explanation for all those concepts
is given and the number of control points cannot be changed. The “NURBS Calculator”
developed by Gami [30], however, tries to explain the NURBS concepts. This is done
by giving users control over the number of control points, the control point weights and
positions, the value of the curve parameter u, the curve degree, and the knot vector. The
curve type can also be changed from NURBS to B-Spline or to Bézier. Some information
on the differences between those curve types is also given. Furthermore, explanatory text
is displayed when hovering over question mark buttons placed near the available controls.
A FAQ section covering further mathematical background on NURBS is also included.
The tool also supports the import and export of curve configurations as text files using
syntax similar to JSON [31].

Other related topics

Bostock created a Spline editor [32] showcasing many different types of curves used in
geometric modeling, however, unfortunately, no explanations on the way those curves are
constructed were provided. Two demos covering parametric surfaces were also retrieved

8

2.2. Web-based Learning Material Covering Computer Graphics Topics

via web search. Kovacs created an interactive demo for Bézier surfaces [33]. A demo
covering NURBS surfaces [34] was found on the web, too.

2.2.4 Demos for Other Topics Related to Computer Graphics

3D Graphics and Rendering are also significant sub-topics of Computer Graphics. The
collections of demos created by Rocha et al. [12] and Pattanaik and Benamira [11] that
were already mentioned in the previous section cover a slew of topics in those fields.

Vector math and matrix operations are essential concepts that are used in practically any
application involving Computer Graphics. However, a few concepts might not be intuitive
to people learning the basics. One example are vector/matrix transformations. As finding
the right order in which matrix transformations have to be applied on some 2D/3D
object to achieve the desired result was no trivial task for me personally, additional
emphasis was put on this specific sub-topic when searching for learning material. Several
interactive demos covering vector and matrix operations were found [35], [36], [37], [38],
[39].

Barycentric coordinates were another specific topic that was confusing to me personally
in my journey learning the basics of Computer Graphics. In addition to one of the demos
created by Pattanaik and Benamira [11] this topic is covered by other demos that were
found online [40], [41], [42], [43], [44].

9

CHAPTER 3
Demos Created

This chapter gives a short overview of the demos that were created for this Bachelor’s
thesis. In total, there are five demos. Four of them cover Bézier curves and their
generalizations. Those four demos build on each other and should be explored in order
of appearance, especially if website visitors are new to the topics discussed. Finally, a
demo for barycentric coordinates is also presented.

For the curve demos, some mathematical background was provided to users interacting
with them. The main source of information on the mathematical and algorithmic details
behind the parametric curves presented were the course notes of the “Introduction to
Computing with Geometry” course at Michigan Technological University [45]. The
Wikipedia pages on Bézier, B-Spline, and NURBS curves [46] and video lectures on
Bézier and B-Spline curves found on YouTube [47] were also helpful. However, all those
sources used slightly different mathematical notations. For the demos, custom notation
combining all the sources’ notation styles that also stays consistent between the demos
was created in an effort to reduce user confusion.

3.1 Introduction to Bézier Curves
This demo should give users an intuitive understanding for what Bézier curves are and
how they are evaluated by the computer in order to be drawn onto the screen. Users are
made familiar with Bézier curves step-by-step. A demo guide accompanies the user and
tries to convey more of the general idea and concepts behind Bézier curves with each
step.

3.1.1 Interactive Features and Visualization Techniques Used

Users may define an arbitrary number of control points for a Bézier curve. Each control
point can be moved. At any time control points may be added after a particular control

11

3. Demos Created

point by clicking the plus icon that is shown while the user hovers over a control point or
drags it. This means that control points may also be added between two existing control
points. Upon dragging/hovering a control point, a minus icon is also shown, allowing
users to delete the control point.

A slider is provided, allowing users to change the value of the curve parameter t. If the
value of t changes, a red point also moves along the curve accordingly. The movement
of the point can also be animated by using controls similar to those of media players.
Clicking the play button makes the animation start. The value of t then automatically
increases continuously (and resets back to 0 once the value 1 is reached) - as a consequence
the point also moves along the curve. The speed and the direction of the animation can
be changed, too, using two more buttons.

The De Casteljau algorithm that is used to find the position of the point on the curve
for a particular value of t is also showcased, drawing inspiration from [22] and [28]. The
interpolated temporary control points and lines that are created in order to find the
point on the curve are also drawn, visually demonstrating the recursive nature of De
Casteljau’s algorithm.

3.1.2 Bonus Feature: Demo Guide

Depending on how many control points the user has added to the Bézier curve demo,
a demo guide shows different useful contextual information. Initially, while there are
no control points on the canvas, the user is told to add a single point. Then, the demo
guide asks the user to add another point. Once the second point is added, the concept
of linear interpolation between two points is introduced, followed by the prompt to add
yet another point. If the user has done that, he/she has constructed a quadratic Bézier.
Apart from making the user aware of this fact, an introduction to the concept behind De
Casteljau’s algorithm is provided. The demo guide then asks the user to further explore
the demo by adding yet another control point, creating a cubic Bézier curve. Finally,
users are informed that they can add as many control points as they want and are made
aware of the fact that each additional control point makes the rendering of the Bézier
curve computationally more expensive The problem with global control of each control
point is also illustrated.

3.2 Bézier Curves and Bernstein Polynomials

The second demo tries to take a look at the relationship between Bézier curves and
Bernstein polynomials. To provide some context, users are first presented with the
formula for the Bézier curve

C(t) =
n∑

i=0
bi,n(t) · Pi

12

3.3. B-Spline Curves

and the formula for the Bernstein polynomials

bi,n =
(

n

i

)
· ti · (1− t)n−i

The meaning behind the variables (except the curve parameter t that was also discussed
in the first demo) is described.

In the interactive part of the demo, users can use a canvas to add control points for the
Bézier curve and edit the value of the parameter t, like in the first demo. The curve
drawing visualization can be toggled on/off, if desired by the user. The main focus,
however, lies on the additional features introduced.

The graphs for the bi,n of each Pi are displayed next to the canvas. When hovering or
dragging a Pi, its corresponding bi,n is highlighted in the graph plot. The graphs update
whenever new control points are added or control points are removed. Depending on
the current value of t, a vertical red line is also plotted on the graph. All those visual
cues should help users make the connection between the graph plot and the curve that is
drawn.

The bi,n are also written out explicitly below the graph, displaying their current values,
too. Users can see the current Bézier curve formula (sum of bi,n multiplied by the
currently used Pi) that changes in real-time.

A much more visual demonstration of the meaning of the Bernstein polynomials is also
given in the form of control-point influence-bars that can be toggled on/off by the user.
Those bars are displayed right next to each Pi (they can also be moved) and show the
current value of each bi,n. If a bar is full, this means that the bi,n is equal to its maximum
value 1. Vice versa, a value of 0 is displayed as an empty bar, supported by an additional
no influence info text.

Yet another visualization technique in this demo was the visualizer for the currently
active (dragged or hovered) Pi. This visualizer maps the values for the Pi’s corresponding
bi,n across the range of t onto the line that is drawn. Instead of the usual black line, a
line is drawn using the Pi’s associated color. The thicker the line, the greater the value
of the Pi’s bi,n.

3.3 B-Spline Curves
The third demo of this project focuses on B-Spline curves and their differences compared
to Bézier curves. Again, initially, a lot of related mathematical terminology is introduced,
mainly the knot vector T and the B-Spline basis functions Ni,p. The introductory text
describes how the knots ti in T split the range of t into segments that make it possible
for each Ni,p to only have local control. Remarks concerning the curve domain are also
made (e.g. t not necessarily being ∈ [0, 1], or differences between open and clamped
B-Spline curves).

13

3. Demos Created

The interactive demo keeps many of the concepts from the second demo. Again, the user
can edit control points as he/she wishes. However, now a clamped second-degree B-Spline
curve is rendered instead of the Bézier curve. The control point influence visualizations
described previously also work in this demo. They now use the Ni,p (p being the curve’s
degree) of each Pi. A plot of the Ni,p is drawn, too, with the same interactive features as
in the previous demo.

The first addition are buttons with plus and minus icons, allowing users to change the
curve degree p. Of course, the curve changes in real-time, just like the plots for the Ni,p.

As the knot vector is one of the core features of B-Spline curves, it is also shown to
users. The length of the knot vector is determined automatically on every change of the
number of the Pi and it is pre-filled with values, depending on the chosen curve type (see
next paragraph). Those values can be edited at any time by the user (invalid inputs are
sanitized). Again, the curve and the plot update after every change made.

This demo also allows the user to switch the curve type. They can choose between open
B-Spline curve, clamped B-Spline curve and emulated Bézier curve. Depending on the
selected curve type, the knot vector changes immediately and is subsequently calculated
differently every time a control point is added or removed. For open B-Splines, the knot
vector values are simply set to be equidistant (the first value being 0 and the final one
being 1). If the curve type is set to “closed B-Spline”, the first p + 1 knot vector values
are 0 and the last p + 1 are 1. Finally, for the emulated Bézier curve, the degree of the
curve of the demo is always equal to the number of control points - 1 (the user cannot
change the degree then), the first half of the knot vector consists of zeros, the second half
of ones. This allows users to see immediately, what the differences between the curve
types are and how the knot vector changes when switching curve types.

The visualization for the curve evaluation process is also updated after every relevant
change to the curve (knot vector or curve degree). It also draws markers for the knots
onto the curve. As the user changes the value of t, the visualization also adapts as it
moves past a particular knot in the knot vector: the user can see that those Ni,p whose
value is guaranteed to be 0 are not considered at all when evaluating the curve (or,
worded differently: only the non-zero Ni,p are used for evaluating the curve).

3.4 NURBS Curves
The final curve demo discusses NURBS curves, a generalization of B-Spline curves. This
demo tries to showcase the main difference compared to B-Spline curves: the added
control point weights. Practically all features from the NURBS demo were transferred to
this demo. Only the curve evaluation visualization is not shown to users as it uses three
dimensions and it could not be visualized in a meaningful way.

The control point weights can be edited by the user. If this is done, the curve and plots
update accordingly too. The user can see how the control point with higher weight
“pulls” the curve closer, as if it had a magnetic force. This is further illustrated with the

14

3.5. Barycentric Coordinates

same visualization methods outlined above (control point influence bars and visualizer
for influence of active control point). In the, plot the original basis functions without
weights (or with weights of 1, to be exact) are drawn in the same plot as the weighted
basis functions, with dotted lines to allow comparisons.

3.5 Barycentric Coordinates
This demo was the first one that was created in the scope of this project, allowing
users to understand how barycentric coordinates work. The color of the point that is
initially placed in the middle of the triangle changes as the user moves the point around,
showing that the coefficients of the control points (the barycentric coordinates) can be
used for vertex color interpolation. Interactive aspects from existing demos (discussed in
Chapter 2) were adapted. While no ground-breaking new visualization technologies were
used, this demo was still interesting from an implementation standpoint as the draggable
control points used here were the first interactive UI elements that were implemented.
The underlying implementation of draggable vertices (DragVertex) is used throughout
the whole application. Also, basics of rendering text onto the canvas with p5.js were
tried out here first.

15

CHAPTER 4
Tech Stack and Tools Used

As the project that was created in the course of this Bachelor’s thesis is a web application,
the most obvious choice is using the well-established combination of JavaScript, HTML,
and CSS that is used in all common modern browsers to display websites with interactive
features on the client-side. This combination of technologies has become the de-facto
standard on the web and there are no real alternatives. However, there are still many
different technologies that can be used to enhance the web developer experience (e.g.
code libraries provided as JavaScript modules and languages like TypeScript or SCSS).
Bundling all the code and other static assets required for a website is also not a trivial task.
The final bundled, production-ready project then also has to be made publicly available
via the web to allow users to use the website or web app in their own browsers. Tooling
for those purposes exists, too. This section gives an overview of all the technologies used
for this project.

4.1 Node.js and Node Package Manager (npm)
As stated on the Node.js website, “Node.js is a JavaScript runtime built on Chrome’s
V8 Engine”[48]. It facilitates the execution of JavaScript outside of browsers. With
Node, JavaScript can also be used directly on Windows, Mac, or Linux, with full access
to the file system and the networking capabilities of the local machine (e.g. HTTP,
TCP). Initially, Node.js was mostly associated with web servers and the backend. In
his talk at JSConf in 2009 Ryan Dahl, the inventor of Node.js, also focused mainly on
the performance and scalability benefits of using Node.js for building web servers [49].
However, over the course of the years, Node.js and its use cases evolved further. It can
now be used to build complex web applications, microservices, command-line tools, or
even full-fledged desktop applications (with the help of frameworks like Electron)[50][51].

Another Node feature that is very popular and relevant (also for frontend projects, like
this Bachelor’s thesis) is its module system that allows programmers to simply import

17

4. Tech Stack and Tools Used

modules offering functionality that is needed for particular projects. It was introduced
before modules were supported natively by browsers and uses the CommonJS syntax,
which differs from the more recent, native JavaScript module syntax [52][53]. Every node
installation comes with some built-in modules for functionality like HTTP, file system
interaction, etc. [54]. However, Node also supports the installation of third-party-modules
for various purposes. With every installation of Node, the Node package manager (npm)
is also included. npm is the name of Node’s package manager as well as its registry of
publicly available packages. Such so-called npm packages in turn include node modules.
Everyone can publish his/her own packages to npm to share them with other developers
around the world [55]. npm was also used to install and manage the dependencies of this
particular project (Side note: Webpack, the module bundler used for this project, and its
development server (webpack-dev-server) also both run in Node [56]).

4.2 Programming Language: TypeScript

JavaScript is the scripting language that has become the de-facto standard on the web.
However, the dynamic nature of JavaScript has some disadvantages. More generally
speaking, an unfortunate implication from the design of dynamically typed languages is
that code completion in IDEs is significantly less extensive and powerful than in statically
typed languages. Also, dynamically typed languages are commonly thought to be more
error-prone as type errors cannot be discovered statically and instead can only occur
later, at run-time. But still, dynamically typed languages like JavaScript are used a lot
in practice, mainly because of their flexibility compared to statically typed languages
where generally more code is needed to achieve the same result [57].

TypeScript is a programming language developed by Microsoft. It essentially extends
JavaScript’s syntax with additional features known from statically typed languages. This
means that any JavaScript code is also valid TypeScript code [58]. The most central
feature of the language is that type annotations can be added to variables. Those type
annotations are used by TypeScript’s compiler to infer the desired type of the variable
when this same variable is used later and warn developers if they use the variable in
a “wrong” way, e.g. by assigning it a value of a type other than the type defined in
the type annotation. Building on this idea, e.g. the desired type of input arguments of
functions can then also be added via a type annotation. TypeScript code is transpiled to
JavaScript code using the TypeScript compiler. This JavaScript code can then run in
any browser [59]. TypeScript also allows the use of features from newer ECMAScript
standards (Note: ECMAScript is the standard JavaScript is based on) in older browsers
that do not support them yet [60].

Another great advantage of TypeScript is that it offers so-called declaration files for
external libraries. Those files are essentially type annotations for the libraries’ public API.
Declaration files can even be created for native JavaScript libraries, allowing developers
to use them almost as if they were written entirely in TypeScript. Many such declaration
files for native JavaScript libraries are available via npm in the @types scope. In fact,

18

4.3. Website Stylesheets with SCSS

for this project the declaration files from @types/p5 were used for the p5.js library that
is also written in vanilla JavaScript.

4.3 Website Stylesheets with SCSS
Sass (short for “Syntactically awesome stylesheets”) is a language used for styling content
on the web, just like CSS. It offers more concise syntax compared to CSS. For example,
selectors can be nested, which is not possible in CSS [61]. The relation between Sass
and CSS is similar to the relation between TypeScript and JavaScript: The former is an
extension of the latter, but browsers cannot understand that extended syntax natively.
So, a compiler that converts the Sass code into CSS code (that browsers understand) is
needed [62]. Sass syntax is quite different from CSS, but there is also a different kind of
syntax for Sass called SCSS (Sassy CSS) [63] that is very similar to CSS. SCSS is also
the language used for styles in this project.

4.4 Using Materialize for Website Styles
As designing the website was not a primary focus of this project, a library for CSS styles
was used. For this project, Materialize [64], a library implementing Google’s Material
Design guidelines [65], was chosen. A SCSS version of the library is also available [66].
If using the SCSS version, variables defining the colors used in the styles provided by
the library can be overridden, allowing developers to quickly change the color theme of
the website. The SCSS version of Materialize with custom colors was also used in this
project.

4.5 Bundling Required Resources: Webpack
A website may consist of many different files that are all required to offer users visiting
the website the experience envisioned by the site’s developers. In the most trivial case
developers write a single HTML and reference all the required content manually. So,
they would add HTML tags for the overall structure and content of the page, and add
stylesheets written in CSS that define the site’s layout and design on different end-user
devices and viewports. If additional user interaction with the site leading to dynamic
changes of the page content is required, the logic for this is written in a JavaScript file
that is referenced in the HTML document via a <script> tag. Most sites also use
static assets like images or videos. They have to be referenced appropriately, too. If
there are other pages on the website, each new page might get its own HTML with all
the necessary CSS, JavaScript, and other assets, possibly fetched from some other sites.

While this approach sounds simple at first glance, it quickly becomes cumbersome and
tedious. In general, the bigger a project gets, the more difficult it becomes to manage
all the resources it requires. For example, this is the case for websites with several
subsites, or even more so with modern Single-Page-Applications that load the content to

19

4. Tech Stack and Tools Used

be displayed on user interaction dynamically. Furthermore, larger projects with lots of
JavaScript generally use code split into various modules that are imported from several
files. If many modules are imported, it is also very likely that they depend on each
other. So, the imports have to be done in the correct order. This quickly becomes a
nightmare if one uses many different external libraries where even naming conflicts and
other problems might occur. Another issue arises if TypeScript or Sass are used, which
both require additional pre-processing steps - one cannot simply send TypeScript or Sass
files to browsers, as they cannot be interpreted by the browsers.

Module bundlers help solve all these problems, and more. They take care of resolving
the dependencies of a project for the web correctly. In the traditional sense, module
bundlers are merely used to resolve dependencies between JavaScript code modules and
create a bundled JavaScript file with all the modules resolved in the correct order. This
bundled file can then be consumed by the browser. It does not have to fetch the required
libraries/modules from several sources itself, instead it gets all required code in a single
bundle. But many module bundlers offer additional, more general bundling features
for projects on the web. They also simplify the management of additional resources a
website might need apart from JavaScript (e.g. HTML, CSS, static assets like images,
and more). Moreover, they can be configured to also take care of additional preprocessing
that converts code from languages browsers do not understand (like TypeScript or Sass)
to the browser’s native languages (like JavaScript or CSS). The output JavaScript/CSS
is then provided to client browsers by the server. Often commodities that simplify the
development process (like sharing HTML templates or JavaScript code between subsites)
are also provided. Additionally, often convenient development configurations for projects
are supported, like for example so-called hot-reloading of only the parts of the code that
actually changed when the most recent save occured. For example, the application may
reload, if one of the SCSS stylesheets changes, and the result becomes visible immediately.
Another common feature of module bundlers is code minification: the bundled code gets
condensed furthermore and all unnecessary characters are removed. This results in a
smaller overall bundle size which in turn improves loading times of websites [67].

Webpack [68] is a popular module bundler that was also used for this project. It offers all
of the features mentioned above. Moreover, several plugins can be installed. For example,
the webpack-bundle-analyzer[69] plugin gives developers an overview over what modules
contribute how much to the overall bundle size.

4.6 Rendering the Demos Onto the Screen: p5.js

When planning to render graphics in the browser, the HTML Canvas Element has to be
used. Browsers implement two JavaScript APIs that can be used to render graphics onto
the HTML Canvas. The first option is WebGL. WebGL is essentially OpenGL for the
browser (as has already been discussed in Chapter 2) and can be used to render both
2D and 3D graphics onto the Canvas. The alternative is the Canvas API [70] that is
limited to 2D only, but still quite powerful. Many drawing/graphics libraries exist that

20

4.7. Mathematical Notation in the Browser: MathJax

can be used to render elements onto the HTML Canvas. Some are wrappers for WebGL
(like Three.js [71]) and meant to be used with 3D Graphics in mind, others use only
the Canvas API (like fabric.js [72]) and focus more on other features like for example
simplifying interactive features. p5.js [25] was the library chosen for the demos created
in the scope of this work. It represents a “hybrid solution” as rendering modes using the
Canvas API and WebGL are both supported. The library aims to be very accessible also
to people that do not have as much experience with JavaScript, graphics programming,
or coding in general. Additional libraries abstracting built-in browser APIs are also
included with p5.js, including a simplified DOM API and a sound API.

4.7 Mathematical Notation in the Browser: MathJax
MathJax [73] is a JavaScript library that facilitates the use and display of mathematical
formulas written in TEX, MathML, or AsciiMath in the browser. The input formulas can
be transformed to SVG, HTML and CSS, or MathML. As mathematical formulas are an
integral part of this project, MathJax was also used in this particular project.

4.8 Deployment: GitHub Pages
Every website needs server infrastructure were it is hosted from. GitHub provides a fairly
straightforward solution for website deployment called GitHub Pages [74]. GitHub Pages
can be used with any website project that has a repository on GitHub. A corresponding
npm package called gh-pages [75] is also available. This package provides a command-line
utility. Its most important command, gh-pages, takes care of all the work required
to deploy the website. For example, gh-pages -d dist automatically publishes the
content of the dist folder of the current project to GitHub Pages, making it publicly
available. Many resources available online explain the details of this process. A YouTube
video by the channel “Traversy Media”[76] was used as a starting point for deployment
of this project via GitHub Pages.

21

CHAPTER 5
Implementation Details

The technologies used in this project and the reasons for using them were already outlined
above. This chapter gives an overview of how components were put together in practice
in the codebase for this project. An overview of the file and folder structure and the
reasoning behind it is given. For interested readers, this project’s code is also available
publicly on GitHub. Some parts of the codebase might be subject to change in the future.
This chapter describes the codebase as it was on 15th of September, 2021.

5.1 Project Configuration Details
To make it possible to run the project in development mode or build the project and
deploy it to a web server, some configuration is necessary. The core configuration files
can all be found in the project root directory.

5.1.1 Node Configuration

This project uses Node.js. Every Node.js project also needs some configuration. The
package.json file keeps track of the project’s dependencies. It stores all the npm
packages the project needs in order to become executable. If the project is cloned from
GitHub, running npm install on any machine that has Node.js installed is enough
to get the project up and running. Scripts can also be defined in this file. A script
can trigger a pre-defined command or series of commands. For example, in this project,
typing npm run deploy causes the whole project to be built, storing all files in a folder
called dist, and then deploying them to GitHub Pages.

5.1.2 tsconfig.json

tsconfig.json stores the TypeScript compiler configuration that defines what JavaScript
version the TypeScript code is transpiled to and how strict the compiler’s type checking

23

https://github.com/Sejmou/interactive-computer-graphics

5. Implementation Details

should be, among other things.

5.1.3 Webpack Configuration

The Webpack configuration files are especially important as they define the whole build
process of the project. In many projects using Webpack, a webpack.config.js file is
included. This file defines how Webpack should do its job of bundling all the necessary
data (HTML, JavaScript, CSS, and static assets) for the website. The most essential
parts of the Webpack setup for this project are outlined here.

Config Files

In this project, Webpack can be run with two separate configurations: one for production
and one for development. Shared configuration parameters between these two configu-
rations are stored in webpack.common.js. The webpack-merge npm package is then
used to merge the common configuration parameters with those specific to the production
(webpack.prod.js) and development (webpack.dev.js) configurations.

With the production configuration, Webpack puts all the bundled data in a folder whose
content can then be deployed to public web servers as-is. This folder is commonly
called dist, this name was also chosen in this project. On the other hand, with the
development configuration, the bundled data is merely loaded into memory (and not
stored on the hard disk). This data is then served on a local development server (provided
by the webpack-dev-server [77] npm package) running on the machine that is listening
on a pre-configured port. In the case of this project the development server runs on
localhost:5500.

Loaders

For all files that are not plain .js files, dedicated loaders have to be used that define
what Webpack should do with them. They can be used for various tasks, such as simply
putting static assets into a desired folder, allowing developers to use the import syntax
for files that are not JavaScript modules or pre-processing/transpiling files. Some concrete
examples: In this project, the file-loader is used to load all images and store them in
the imgs folder. The scss-loader, css-loader and style-loader combined allow one to
import styles defined in an .scss file using the import syntax. The awesome-typescript-
loader takes care of properly loading all TypeScript files in the project by compiling
the TypeScript code files, converting them to JavaScript files and then adding those
to the final bundle. All these loaders are defined in the module.loaders property of
webpack.common.js.

HTMLWebpackPlugin

HTMLWebpackPlugin [78] is the only Webpack plugin that is used in this project.
However, it has a very significant purpose: It creates the final HTML files for each site

24

5.1. Project Configuration Details

in the demo by processing the EJS templates, including all the relevant code/styles, and
inserting the data provided to the templates. Each site is created by a separate instance
of HTMLWebpackPlugin that is added to the plugins array property of the Webpack
config exported by webpack.common.js. The HTMLWebpackPlugin instances accept
a configuration object that is then used to define the template to be used for the output
HTML page, the name/path of the output file, and the chunk (.ts file that imports
all the page code and styles) to add in the <script> tag of the output .html file.
Additional parameters can also be passed to the template and be consumed by it using
EJS [79] syntax. In this project the text for the <title> and the main heading of each
demo’s site were added this way.

5.1.4 Webpack In Action: How The Sites Get Their Content

To demonstrate how all the Webpack-related concepts outlined above come together to
produce a working HTML page that browsers can show to users, we discuss how the
main page of this project, index.html is created. The core parts of the process are
essentially the same for the production and development configurations. All the required
content for the main page is stored in src/index. The index.ejs is a template file
that is converted to index.html by the HTMLWebpackPlugin. Images that should
be used in the main page are stored in imgs (the file-loader takes care of putting
them in a specific folder that is referenced in the EJS template). As outlined above,
the HTMLWebpackPlugin also accepts one or more chunks that are inserted into the
output HTML in the <script> tag. While the main page does not have any significant
JavaScript logic, it still has a chunk, too. This is because with the Webpack setup in this
project, styles defined in .scss files are also imported via JavaScript. The index.ts
file is handed to HTMLWebpackPlugin as the chunk it should use. index.ts contains
the following line:

import ’./index.scss’;

This single line tells Webpack to take the content of the index.scss file, convert it
to CSS styles and then translate them into JavaScript code manipulating the DOM
that is inserted into the chunk file. As soon as this chunk is then loaded and executed
by the browser, all the styles defined in index.scss are applied. index.scss itself
imports global CSS styles from src/global-styles/styles.scss using the SCSS
@import syntax and defines some additional styles specific to the main page. Still, the
cascade of imports does not stop here. In the styles.scss file, styles related to the
Materialize SCSS library that is used in this project are also imported.

For creating the demo sites the process is very similar. Each demo site uses the same
EJS file (demo.ejs) for creating the HTML file. Furthermore, it has its own subfolder
containing a .ts file and a .scss file. The .scss file is always imported in the .ts
file, just like with the main page. However, additionally each of those files also imports
the p5 library (as it is used for rendering the demos onto the canvas) as well as any
needed TypeScript classes, interfaces, functions etc. that were written to make the demos

25

5. Implementation Details

work. Explanatory text is also added to the each demo page in its .ts file, optionally
using MathJax for typesetting of any mathematical formulas.

5.2 Typescript Code Written for the Project
All the TypeScript code that was written for the implementation of the demos (and
is not tied to a particular demo page) can be found in src/demos/ts. This folder
contains two subfolders: demo-material and utils. demo-material contains all
the TypeScript code directly related to the interactive demo material that is presented
on the website (all the curve demos with their visualizations, and also the barycentric
triangle demo). On the other hand, utils contains various utility functions and classes
that are used throughout the whole application and not tied to a specific demo.

5.2.1 Utility Functions And Classes

The files inside utils are split and organized by their purpose.

Interactivity Utilities

Interactivity was a key requirement in this project. Code related to general interactive
features of the application can be found in the interactivity subfolder within utils.

A design goal for the implementation of each demo was that there should be a central
class that manages all relevant demo state and also carries out computations that are
of interest for several instances of other classes. This concept was especially important
for the curve demos. For example, the current state of properties like the curve control
points, basis functions etc. should only be stored in the CurveDemo class (more details
on the class hierarchy etc. will be discussed in the following subsection) and not be
duplicated. observer-pattern.ts contains interfaces for the implementation of the
observer pattern (one for the subject and one for the observers that subscribe to the
subject). A discussion of the pattern can be found in [80]. For example, these interfaces
were used to inform all classes using curve demo data of relevant changes in the curve
demo (more on that later).

Custom interfaces for adding functionality for modeling is-part-of relationships between
between a container class and elements it contains were created in container.ts. The
expected use of these interfaces is documented in the codebase. A use case of these
interfaces was the relationship between the control points of a curve and the curve demo:
If the user clicks a control points’ “add control point” button, a new point should be
added to the control points of the demo after that point. If its “remove” button is clicked,
the point should be removed from the curve demo control points. To achieve this, the
curve control points needed a way to tell their container “what they want it to do”. For
this purpose, the Container and ContainerElement interfaces were used.

Finally, checkbox.ts contains a utility class for adding a checkbox to the UI. This
checkbox can toggle an arbitrary property and have other side-effects defined by the user,

26

5.2. Typescript Code Written for the Project

a label and tooltip text that is displayed on hover can also be added. It was used in this
project to toggle visualizations for the curve demos.

p5 Utilities

To improve the usability of the p5 library for this project, some utility code was written,
too. It is spread across multiple files in utils/p5.

One of the biggest and most complicated tasks related to p5 was finding a scalable way
to deal with canvas events (clicks, canvas resize, etc.). p5 wraps native canvas DOM
events in custom event-handling callbacks. The native canvas element is not meant to
be accessed directly. For example, instead of adding a listener for the click event to
the HTML canvas element, a function has to be provided to p5’s mousePressed()
function. Each subsequent call to this function would overwrite the previous event
handling function. So, adding multiple event handlers (e.g. one for each object added to
the canvas) is not possible with p5 out of the box. A possible workaround would have
been using the native canvas HTML element, which would have probably worked against
p5’s event system. An alternative approach was chosen and implemented in (sketch.ts
and sketch-content.ts) in the sketch subfolder.

sketch.ts contains a custom Sketch class while sketch-content.ts contains
interfaces and type guards for content that can be added to a Sketch instance. Sketch
is a wrapper around p5’s createCanvas() method that allows the user to add drawable
objects (instances of classes that implement the custom Drawable interface) to the
canvas. If these drawables also handle events (e.g. their classes also implement custom
event handling interfaces that include event handler functions), their event handler
functions are also called each time the respective canvas event occurs.

Another goal was to reduce redundancies in the code that uses the p5 library. For this
purpose, lower-level tasks (such as drawing a line of a certain color and width between
two points) that would have resulted in a lot of very similar, repeated code were put into
utility functions in misc.ts. This file also contains other small p5 utilities.

Finally, some reusable classes implementing p5 canvas objects for the Sketch that are
not tied to a specific demo were also created. vertex.ts contains the implementation
of vertices (points) that can be rendered onto the screen. A draggable variant was also
written, with optional add and remove buttons. This was used for the control points of
every curve demo. polygon.ts contains a polygon that can be initialized with a set of
point positions. If desired, a polygon whose control points can be dragged can also be
created. A draggable polygon with three vertices was used for the barycentric coordinate
demo.

Other Utility Functions

Color was a rather surprising issue that had to be dealt with when creating the demos
(for more details on that see Section 6.1.8). Therefore, many utility functions related to

27

5. Implementation Details

color had to be created. They can be found in color.ts.

Some mathematical concepts were also needed for the creation of the demos. Related
utility functions can be found in math.ts. Helper functions for the DOM are stored in
dom.ts. Finally, misc.ts contains several utility functions that do not fit any specific
category.

5.2.2 Demo Material Code

For the interactive elements of the demos, especially those of the curve demos, many
classes were written. The overall code structure will be discussed briefly in the following
section.

Classes Related To Curve Demos

The curve demos are all building on each other, so with a rather “quick and dirty”
approach to programming them, also a lot of the code for each demo would have been
very similar and there would have been a lot of code duplication, making changes to the
demos very tedious and difficult to implement. Most probably, the codebase would also
have been more difficult to understand. In an effort to make the codebase maintainable,
a basic framework for a curve demo that each of the specific curve demos builds upon was
created. There are mainly two concepts that were used to reduce code duplication and
improve reusability. The first are abstract base classes that implement core functionality
while leaving the specifics open to be implemented for each particular type of curve that
is presented. The second are reusable classes that do not depend on specifics of the curve
- they just work with any type of curve.

All abstract base implementations/classes that are used for the curve demos can be
found in the abstract-base folder. The most important is the abstract CurveDemo
class. For each type of curve discussed in the demos, the concrete implementation of
CurveDemo is the central class that manages all the state of the curve. Those parts of the
state management that work the same for every type of curve are already implemented.
An example is the management of the curve’s control points (including the assignment
of fitting colors to each vertex or logic that allows users of the class to define how
much additional curve information should be shown). Functions and properties that are
specific to each type of curve are defined in the concrete implementing subclasses. For
example, they specify how a point on the curve is found, how each blending function
that defines the influence of a control point for the current value of the curve parameter
t is calculated, what the curve domain is, or what conditions have to be met for the
curve to be considered “valid”. All the other curve-related classes in the codebase rely on
the CurveDemo’s data, change its properties, and/or react to any relevant changes that
occur (defined in a dedicated DemoChange interface).

In general, every CurveDemo uses four additional core components, defined in separate
classes:

28

5.2. Typescript Code Written for the Project

1. An instance of Curve that uses the current values of the curve properties stored
in the CurveDemo to render the actual curve onto the screen.

2. An instance of ControlsForParameterT that allows users to manipulate the
value of the curve parameter t with interactive elements (a slider and buttons).

3. An instance of CurveDrawingVisualization that conveys to users visually
how the point on the curve for the current value of the curve parameter t is found
(e.g. for Bézier curves, this is a visualization of De Casteljau’s algorithm).

4. An instance of InfluenceVisualizerForActiveControlPoint that “projects”
the influence of a particular active (hovered/dragged) control point on the overall
curve (for each value of t). The curve is then drawn in the color of the respective
control point, but it becomes thicker or thinner depending on the value of the
blending function of a control point for the current t. Concrete example of blending
functions are the Bernstein polynomials of Bézier curve control points or the basis
functions of B-Spline curve control points.

Next to CurveDemo, two more curve-related classes are abstract.
CurveDrawingVisualization provides some basic configuration parameters for the
visualization of the evaluation of a curve (as already mentioned above), leaving the exact
implementation open. GraphPlotter is extended for each concrete curve type and
plots the blending functions of the control points (also already discussed above) as graphs,
each colored in the respective control point’s color.

The shared folder contains all classes that do not depend on specifics of the type of curve
that is discussed in a demo. This includes the Curve, ControlsForParameterT, and
InfluenceVisualizerForActiveControlPoint classes already mentioned above.
The control point influence bars that are used in three of the four curve demos are
also “curve-type-agnostic”, just like the class that is responsible for rendering a line at
the current value of t on top of the curve graphs plotted by concrete GraphPlotter
instances.

For each type of curve, the abstract classes of abstract-base were implemented in
the subfolder for the corresponding curve type. Additional classes for specifics of each
curve type and demos were also created. For the Bernstein polynomial demo, a class that
shows the current formulas for the Bézier curve formula and the Bernstein polynomials
it consists of was written. Dedicated classes for the B-Spline demos allow the user to
change the knot vector and the curve degree interactively, as well as the type of B-Spline
curve that should be visualized. Those classes were reused for the NURBS demos too.
Furthermore, the NURBSCurve class extends the BSplineCurve as NURBS curves
share most of their properties with B-Spline curves. The only addition are the control
point weights that turn the basis functions into weighted basis functions. The NURBS
demo also allows the user to change those control point weights, so for this yet another
class was created.

29

5. Implementation Details

Barycentric Triangle

The interactive parts of the barycentric triangle demo were implemented in
barycentric-triangle.ts. Two classes are included there, one for the triangle used
in the barycentric coordinate demo, and one for the point that can be moved across that
triangle surface and beyond (it also computes the barycentric coordinates).

30

CHAPTER 6
Reflection

Over the course of the project, many decisions had to be made, from the overall concept
for the web app to its actual implementation. There is always a multitude of ways to
solve the same problem. Each time a decision for a particular solution is made, other
options are ruled out. This may of course have significant impact on the path the project
takes as time passes and the number of new problems that may arise. This chapter
discusses the major decisions that had to be made and what lessons were drawn from
them.

6.1 Technical Aspects

6.1.1 Choice of Platform and Programming Languages

Luckily, over the course of the project, the decision to build a web application proved
to be a good one. Every device that could be used for viewing the demos that were
planned to be implemented (PC, tablet, smartphone) has a web browser. All currently
popular browsers provide users a very similar experience, often only differing in small
details. Every browser “speaks” JavaScript, HTML and CSS. My previous experience
with developing for the web allowed me to create the demos without any huge problems
related to those languages themselves.

Creating this project as a desktop application or native mobile application would not
have been as practical as writing a web app. None of the other possibilities would have
provided the same cross-platform compatibility without additional work. Looking back,
choosing TypeScript instead of plain JavaScript for writing the code was also the right
decision. The added type safety and better code completion suggestions in the IDE were
huge advantages. However, there were some issues with missing type declarations for
libraries (discussed in detail later).

31

6. Reflection

6.1.2 Experiences Made By Not Using a Frontend Framework

Early on in the project, a decision had to be made whether the web app should be a
single-page application (SPA) or a more traditional website with separate HTML files.
When going the “SPA-route”, using a frontend framework or library such as Angular,
React, or Vue would have benn the natural choice. However, this would still have
introduced a significant number of additional third-party dependencies and may also
have added complexity to the project. As the project was considered “simple enough” to
not need concepts like component-based architecture and advanced routing capabilities
that are common characteristics of frameworks and libraries for SPAs, the alternative
route of creating a “simple” website with links between the different pages - without any
frontend framework - was chosen.

An implicit consequence of the choice for building a more traditional website instead
of using frontend frameworks or libraries was that many smaller tedious tasks such as
creating input elements for controlling the demos had to be implemented in an imperative
way using the browser’s native DOM API. All the required HTML elements had to be
created or selected explicitly, assigning event listeners and CSS classes (or inline styles)
manually, all by calling the respective DOM API functions. This would have been less
tedious in a frontend framework.

In the project, also some advanced, nested HTML structures were built with DOM API
modifications in TypeScript code. Then CSS classes were added and styles were applied in
TypeScript code, too. Also, the same HTML template was used for all demos. However,
some elements still needed to be different between demos, so again the DOM API was used
in the code to make the layout work. This made the project more difficult to understand,
as reading through all the code is just not as quick as looking at HTML markup directly.
Probably using a frontend framework that offers encapsulated components with strictly
separated HTML markup, JavaScript/TypeScript logic, and CSS styles, would have
been useful. Such components could also have been inserted into HTML markup in a
simpler fashion, and experimenting with the layout would have been quicker. Their more
declarative syntax would also have made it easier to keep an overview.

More generally speaking, unfortunately, the codebase turned out to not be as modular
and easily extendable as initially desired. For example, the base demo class has many
different responsibilities, making it difficult to understand.

6.1.3 p5.js vs. Alternatives

Another important decision in the beginning phase of the project was choosing a library
for rendering the demos onto the HTML canvas (or even using no external libraries at
all). As already outlined above, p5.js was the library chosen for the demos created in
this project. Unfortunately, using p5.js sometimes felt tedious or even “hacky”. More
unexpected problems are discussed below. Unfortunately, due to lack of experience with
other libraries like Three.js or the plain WebGL browser API, reflecting on this decision
is not really possible.

32

6.1. Technical Aspects

6.1.4 Difficulties with Responsive Design

Initially, one of the goals of the web app project was that it would be comfortably usable
on any of the popular devices used to access the web, ranging from desktops and laptops
to mobile phones and tablets. While all the demos do work on mobile (touch support
is also given), most are not in fact comfortable to use. Over the course of the project
providing responsive design and a consistent user experience across all end-user devices
unfortunately proved too time-consuming. Responsiveness considerations had to be
cancelled.

6.1.5 Difficulties Setting Up Webpack

Refusing to use any frontend framework also implied that the management of all the
resources related to the project had to be configured from scratch. Configuring Webpack
to correctly transpile the TypeScript code to JavaScript, SCSS to CSS, and correctly
including all the dependencies for each demo (HTML, JavaScript, images etc.) was more
difficult then expected. Making the HTML templates for the demos work, including only
the JavaScript code, CSS styles and static assets that were required for the subsite was
also quite difficult. Configuring Webpack’s dev-server with hot reloading of only the
parts of the codebase that changed also took up a significant amount of time. However,
all those struggles also lead to a much better understanding of all the useful concepts
that modern frontend frameworks offer developers “out of the box”.

6.1.6 Using p5.js vs. Using Native Browser APIs

As p5.js is a JavaScript library focussing on “making coding accessible and inclusive for
artists, designers, educators, beginners, and anyone else” [25] it also abstracts away some
of the details of the native HTML Canvas API and DOM API. This abstraction was
useful at times. But at the same time, an unfortunate consequence of this is that the
implementation of many advanced features needed for the project created in the scope of
this Bachelor’s thesis proved more difficult. For some advanced tasks, using the native
DOM API was actually more simple as some specific functionalities were not provided
by the “DOM API Wrapper” of p5. Attaching event listeners to the canvas element
created by p5 also felt awkward and “hacky”. The lack of certain features in p5 meant
that a combination of p5’s DOM API wrapper and the native DOM API was used. This
probably impaired the overall readability and quality of the codebase.

6.1.7 Performance Problems

The code used for the interactive demos is probably not written in the most efficient
way. With some quick fixes performance could be kept at an acceptable level. However,
unfortunately due to time constraints and lack of experience, the programs could not be
optimized to the desired degree. p5’s 3D renderer that utilizes WebGL under the hood
was also not used (the reasoning behind this being that the demos were only meant to be

33

6. Reflection

implemented in 2D anyway). Maybe with WebGL enabled (or when using other WebGL
libraries like Three.js), performance would have been better.

6.1.8 Coloring Vertices: Not As Easy As Expected

The control points of the parametric curves in the created demos (Bézier curve, B-Spline
curve, NURBS curve) can be edited as desired by users. New vertices can be added, also
in between two existing vertices. Of course at any time, vertices may also be removed.
This created an interesting and surprisingly difficult problem in the implementation of
the demos because a requirement was that each vertex had to have its own color that was
as distinguishable from its direct neighbors as possible. This was important as graphs
directly related to each control point were also shown (i.e. the Bernstein polynomials of
Bézier curves or the basis functions of NURBS curves). Each control point’s color had
to be clearly distinguishable from the background, too. Those requirements led to an
unexpected digression into the realms of color (color spaces, luminance of colors etc.). A
considerable amount of additional time was spent coming up with logic for finding fitting
colors that are “not too similar” to others, among other things.

6.1.9 Issues with Library Type Declarations and Documentation

In a few occasions the “official” type declaration files for p5.js provided via @types
on npm were incomplete or erroneous. This led to some unnecessary confusion. Also,
even after spending a lot of time googling and searching the official documentation, no
solution on how the TypeScript version of the MathJax library worked and how it could
be set up to make it usable in the project was found. The workaround for this was to
simply include a JavaScript version of a MathJax configuration directly via the HTML
<script> tag, not utilizing the advantages of TypeScript.

6.1.10 Issues With State Management

A well known issue in frontend web applications is state management. Every click,
keyboard input or other event may change the state of some part of the application in
some way. Quite often several different parts of the application have to “know” about the
state of particular parts of the application or might even want to update it. Furthermore,
certain classes/components have to store some states locally. Keeping all those states
in sync can quickly become difficult, and it also was in this project. There were some
factors that made things more complicated.

To inform classes using curve demo data of changes, the commonly used observer pattern
was implemented. The curve demo then takes over the role of a so-called subject. Several
observers can subscribe to that subject. The subject pushes updates to all subscribed
observers. The way this pattern was implemented in this project led to an unnecessary
increase in complexity. Unfortunately, when changes occurred, the observers were only
notified that a certain type of change occurred and not what exactly that change was.
This meant that additionally every observer also had to store a reference to the curve

34

6.2. General Aspects

demo and check what the current values of its properties were. Maybe the use of a
dedicated state management library would have helped. At the same time, yet another
factor made the software more complicated: the render loop.

Per default, p5.js renders onto the canvas in a loop, 60 times per second. This fact was
used (and maybe abused) in this application, too. Instead of responding to changes or
events, some classes just used the render loop to get the latest state of parts of the demo.
It was therefore unfortunately not always clear, where each application part got its data
from and who modified it when.

6.2 General Aspects

6.2.1 Differences in Mathematical Notation

Many different sources were used to gain understanding of the mathematical foundations
for the topics discussed in the demos. Unfortunately, there were often minor differences
in notation that made learning a lot more difficult. In the codebase and on the website,
custom notation had to be used to stay consistent between different demos and not
confuse users unnecessarily.

6.2.2 Issues Finding Literature/Relevant Existing Work

It was initially very difficult to pinpoint what kind of literature and existing material
should be searched for. Even more difficult was then to find material that could be
relevant. In fact, many interesting resources were discovered rather late in the project.

6.2.3 Structuring The Written Part of The Bachelor’s Thesis

The implementation part provided a very interesting, but still quite demanding challenge,
as expected. However, it was much more difficult than initially estimated to define the
overall structure of the written part of this Bachelor’s thesis and put the work that was
done into words. Many sections were rewritten many times, chapters and sections were
rearranged frequently. Filtering out the important findings and not getting lost in details
was a significant challenge for me. Hopefully this work still provides value in some way.

6.2.4 Planning Issues

The amount of time and effort spent for this Bachelor’s thesis was greater than expected.
At several times, seemingly simple tasks took much longer than initially planned. But
still, overall the whole project was a tremendous learning experience. Despite occasional
moments of frustration there were also lots of joyful moments.

35

CHAPTER 7
Conclusion

7.1 Summary

The rather vague initial goal of creating a website with some (hopefully useful) interactive
demos for Computer Graphics topics spawned several other related artifacts.

First, a quick overview of teaching methods, approaches and related tools in the field
of Computer Graphics was provided based on existing academic publications. Related
existing interactive online teaching material was discussed later. This collection of
learning material could provide good starting points for people interested in learning
more about certain Computer Graphics topics and may save some time otherwise spent
searching around the web by oneself. To me, it also served as inspiration for the creation
of the interactive demos of this project.

The actual website that was created and its core implementation details were also dis-
cussed, explaining some of the reasoning behind the way the demos were created. The
discussion of implementation details also included a detour into web development tech-
nologies and tools that were used. Writing this section helped me personally understand
the complex world of web development and all the new things that keep emerging in it a
bit better. Hopefully the content discussed is also valuable to others.

7.2 Use Cases for the Web App

The primary reason for creating the demos of this project was to help with learning.
So obvious use cases are in the field of Computer Graphics education. Hopefully the
demos created are useful to some people learning the topics covered. The demos could
potentially also be used by teachers and educators, if they consider them intuitive and
insightful.

37

7. Conclusion

7.3 Open Issues/Possible Further Work

7.3.1 Search Engine Optimization

In theory, the website of this project and its demos are available to anyone as the website
is available publicly. However, some search engine optimization would be necessary to
make sure this website is included in the top search results when people want to learn
about the topics covered by its demos.

7.3.2 Evaluation of Usability

Hopefully, this website will be useful to at least a few people trying to learn any of
the topics covered by the website’s demos. Due to time constraints, the demos could
unfortunately not be created with feedback of a larger group of potential users.

It would be very interesting to see if the requirements for the demos outlined in Chapter 1
(especially the “gradual learning curve” and the ability of the demos to “make the math
make sense”) were actually met. Most probably, a user study would be able to at least
partially answer those questions. A well-designed user study may pinpoint aspects of the
topics covered in the demos that were explained poorly and indicate how they can be
presented to users in a more effective way.

7.3.3 Feedback, Additional Demos

This project could potentially evolve further. Feedback on the whole project would be
very helpful. The existing demos could be expanded, new interactive demos could be
added, also by other contributors. However, most probably a rewrite of parts of the
application would be necessary to make the code more reusable, modular, and thus make
the whole codebase easier to extend. Documentation should be improved, too.

The website featuring the interactive demos is available for anyone to explore:
https://sejmou.github.io/interactive-computer-graphics/

Feature requests, bug reports or pull requests can be submitted anytime to the public
code repository on GitHub:
https://github.com/Sejmou/interactive-computer-graphics

Feel free to contribute!

38

https://sejmou.github.io/interactive-computer-graphics/
https://github.com/Sejmou/interactive-computer-graphics

Bibliography

[1] Dennis Balreira, Marcelo Walter, and Dieter Fellner. What we are teaching in
introduction to computer graphics. In Proceedings of the European Association
for Computer Graphics: Education Papers, EG ’17, page 1–7, Goslar, DEU, 2017.
Eurographics Association.

[2] Thomas Suselo, Burkhard C. Wünsche, and Andrew Luxton-Reilly. The journey to
improve teaching computer graphics: A systematic review. 12 2017.

[3] Thomas Suselo, Burkhard C. Wünsche, and Andrew Luxton-Reilly. Technologies
and tools to support teaching and learning computer graphics: A literature review.
In Proceedings of the Twenty-First Australasian Computing Education Conference,
ACE ’19, page 96–105, New York, NY, USA, 2019. Association for Computing
Machinery.

[4] Thomas Suselo, Burkhard C. Wünsche, and Andrew Luxton-Reilly. Mobile aug-
mented reality as a teaching medium in an introductory computer graphics course.
In 2018 International Conference on Learning and Teaching in Computing and
Engineering (LaTICE), pages 72–76, 2018.

[5] Burkhard C. Wünsche, Edward Huang, Lindsay Shaw, Thomas Suselo, Kai-Cheung
Leung, Davis Dimalen, Wannes van der Mark, Andrew Luxton-Reilly, and Richard
Lobb. Coderunnergl - an interactive web-based tool for computer graphics teaching
and assessment. In 2019 International Conference on Electronics, Information, and
Communication (ICEIC), pages 1–7, 2019.

[6] The end of Applets. https://www.infoq.com/news/2021/03/
end-of-applets/. Accessed: 2021-08-22.

[7] Release statement for WebGL 1.0 (Khronos Group). https://www.
khronos.org/news/press/khronos-releases-final-webgl-1.
0-specification. Accessed: 2021-08-27.

[8] WebGL (Mozilla Developer Network). https://developer.mozilla.org/
en-US/docs/Web/API/WebGL_API. Accessed: 2021-08-27.

39

https://www.infoq.com/news/2021/03/end-of-applets/
https://www.infoq.com/news/2021/03/end-of-applets/
https://www.khronos.org/news/press/khronos-releases-final-webgl-1.0-specification
https://www.khronos.org/news/press/khronos-releases-final-webgl-1.0-specification
https://www.khronos.org/news/press/khronos-releases-final-webgl-1.0-specification
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

[9] Ed Angel. The case for teaching computer graphics with webgl: A 25-year perspective.
IEEE Computer Graphics and Applications, 37(2):106–112, 2017.

[10] Sumanta N. Pattanaik and Alexis Benamira. Teaching Computer Graphics During
Pandemic using Observable Notebook. In Beatriz Sousa Santos and Gitta Domik,
editors, Eurographics 2021 - Education Papers. The Eurographics Association, 2021.

[11] Sumant Pattanaik. Computer graphics fundamentals (Observable). https://
observablehq.com/collection/@spattana/class-4720. Accessed: 2021-
08-22.

[12] David Rocha, Daniel Exposito, Juan Ruiz de Miras, and María Dolores Robles
Ortega. A web application to support teaching of computer graphics to engineering
students. The International journal of engineering education, 34(1):34–44, 2018.

[13] David Rocha, Daniel Exposito, Juan Ruiz de Miras, and María Dolores Robles
Ortega. Interactive web platform to support the teaching of computer graphics.
http://www4.ujaen.es/~demiras/cgex/. Accessed: 2021-08-25.

[14] Jakob Ström, Karl Åström, and Tomas Akenine-Möller. Immersive math. http:
//immersivemath.com/ila/index.html. Accessed: 2021-03-10.

[15] Dan Margalit and Joseph Rabinoff. Interactive linear algebra. https://
textbooks.math.gatech.edu/ila/matrix-transformations.html. Ac-
cessed: 2021-03-10.

[16] Wayne Brown. Runestone academy: Learn computer graphics using webgl
(interactive textbook). https://runestone.academy/runestone/books/
published/learnwebgl2/index.html. Accessed: 2021-08-25.

[17] WebGL fundamentals. https://webglfundamentals.org/. Accessed: 2021-
08-25.

[18] David Eck. Source and demos (for introduction to computer graphics). https:
//math.hws.edu/graphicsbook/source/index.html. Accessed: 2021-08-
25.

[19] Thorsten Thormählen. Graphics programming course of Phillips-University
Marburg. https://www.uni-marburg.de/en/fb12/research-groups/
grafikmultimedia/lectures/graphics. Accessed: 2021-08-25.

[20] GSN Composer documentation. https://www.gsn-lib.org/docs/index.
php. Accessed: 2021-08-29.

[21] Martin Kilian, Torsten Mohs, Raphael Straub, Claudia Bangert, and Hart-
mut Prautzsch. CAGD-Applets - an interactive tutorial on geometric
modeling. https://cagd-applets.webarchiv.kit.edu/mocca/html/
noplugin/inhalt.html. Accessed: 2021-07-27.

40

https://observablehq.com/collection/@spattana/class-4720
https://observablehq.com/collection/@spattana/class-4720
http://www4.ujaen.es/~demiras/cgex/
http://immersivemath.com/ila/index.html
http://immersivemath.com/ila/index.html
https://textbooks.math.gatech.edu/ila/matrix-transformations.html
https://textbooks.math.gatech.edu/ila/matrix-transformations.html
https://runestone.academy/runestone/books/published/learnwebgl2/index.html
https://runestone.academy/runestone/books/published/learnwebgl2/index.html
https://webglfundamentals.org/
https://math.hws.edu/graphicsbook/source/index.html
https://math.hws.edu/graphicsbook/source/index.html
https://www.uni-marburg.de/en/fb12/research-groups/grafikmultimedia/lectures/graphics
https://www.uni-marburg.de/en/fb12/research-groups/grafikmultimedia/lectures/graphics
https://www.gsn-lib.org/docs/index.php
https://www.gsn-lib.org/docs/index.php
https://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/inhalt.html
https://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/inhalt.html

[22] Chris Price. Bézier curve demo (inspired by animations on Wikipedia (https:
//en.wikipedia.org/wiki/B%C3%A9zier_curve#Constructing_B%C3%
A9zier_curves)). http://bezierdemo.appspot.com/. Accessed: 2021-08-29.

[23] Mike Bostock. Demo of De Casteljau’s algorithm (Observable).
https://observablehq.com/@mbostock/de-casteljaus-algorithm. Accessed: 2021-08-
30.

[24] Rune Madsen. Programming Design Systems: Custom shapes. https://
programmingdesignsystems.com/shape/custom-shapes/index.html.
Accessed: 2021-03-10.

[25] Official p5.js website. https://p5js.org/. Accessed: 2021-08-05.

[26] Rune Madsen. Code for Quadratic Bézier Demo of Programming
Design Systems (GitHub). https://github.com/runemadsen/
programmingdesignsystems.com/blob/master/examples/shape/
custom-shapes/quad-animation.js. Accessed: 2021-03-10.

[27] Bézier curve demo (Desmos). https://www.desmos.com/calculator/cahqdxeshd.
Accessed: 2021-08-29.

[28] Richard Fuhr. Exploring Bézier and Spline curves. demo: https:
//richardfuhr.neocities.org/BusyBCurves.html, accompany-
ing YouTube video: https://youtu.be/-aiErrvLRfE, transcript
with further information: https://richardfuhr.neocities.org/
BusyBCurvesTranscript.html, article on medium.com: https://medium.
com/@rdfuhr/exploring-bezier-and-spline-curves-a8261b3c7a8b.
All accessed: 2021-07-27.

[29] Alex Benton. NURBS demo. http://bentonian.com/teaching/
AdvGraph0809/demos/Nurbs2d/index.html. Accessed: 2021-08-30.

[30] Pawan Gami. NURBS calculator. http://nurbscalculator.in/. Accessed:
2021-08-05.

[31] Introducing JSON (json.org). https://www.json.org/json-en.html. Ac-
cessed: 2021-08-31.

[32] Mike Bostock. Spline editor. https://observablehq.com/@d3/
spline-editor. Accessed: 2021-08-05.

[33] Viktor Kovacs. Bézier surface demo. http://kovacsv.github.io/
JSModeler/documentation/examples/bezier.html. Accessed: 2021-08-
29.

[34] Peter Polgar. NURBS surface demo. https://peterpolgar.github.io/
NURBS-surface-demo/. Accessed: 2021-08-30.

41

https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Constructing_B%C3%A9zier_curves
https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Constructing_B%C3%A9zier_curves
https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Constructing_B%C3%A9zier_curves
https://programmingdesignsystems.com/shape/custom-shapes/index.html
https://programmingdesignsystems.com/shape/custom-shapes/index.html
https://p5js.org/
https://github.com/runemadsen/programmingdesignsystems.com/blob/master/examples/shape/custom-shapes/quad-animation.js
https://github.com/runemadsen/programmingdesignsystems.com/blob/master/examples/shape/custom-shapes/quad-animation.js
https://github.com/runemadsen/programmingdesignsystems.com/blob/master/examples/shape/custom-shapes/quad-animation.js
https://richardfuhr.neocities.org/BusyBCurves.html
https://richardfuhr.neocities.org/BusyBCurves.html
https://youtu.be/-aiErrvLRfE
https://richardfuhr.neocities.org/BusyBCurvesTranscript.html
https://richardfuhr.neocities.org/BusyBCurvesTranscript.html
https://medium.com/@rdfuhr/exploring-bezier-and-spline-curves-a8261b3c7a8b
https://medium.com/@rdfuhr/exploring-bezier-and-spline-curves-a8261b3c7a8b
http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.html
http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d/index.html
http://nurbscalculator.in/
https://www.json.org/json-en.html
https://observablehq.com/@d3/spline-editor
https://observablehq.com/@d3/spline-editor
http://kovacsv.github.io/JSModeler/documentation/examples/bezier.html
http://kovacsv.github.io/JSModeler/documentation/examples/bezier.html
https://peterpolgar.github.io/NURBS-surface-demo/
https://peterpolgar.github.io/NURBS-surface-demo/

[35] Thomas van den Berge. A tool for understanding 3d matrix transformations.
article: http://thomasmountainborn.com/transforms-2/, demo:http:
//thomasmountainborn.com/TransformsPlayer/index.html. Accessed:
2021-03-10.

[36] Yuri Sulyma. Matrix visualizer (2d/3d). https://epiplexis.xyz/a/fxh/
matrix_visualizer. Accessed: 2021-03-10.

[37] H. Miller. MIT Mathlet: Matrix vector (+eigenvalues/vectors). https://
mathlets.org/mathlets/matrix-vector/. Accessed: 2021-03-10.

[38] Desmos: Matrix transformations tool. https://www.desmos.com/
calculator/vkws7hybxc. Accessed: 2021-03-10.

[39] Wolfram Alpha: Examples for geometric transformations. https:
//www.wolframalpha.com/examples/mathematics/geometry/
geometric-transformations. Accessed: 2021-03-10.

[40] T. J. Jankun-Kelly. Barycentric coordinates (Oservable). https://
observablehq.com/@infowantstobeseen/barycentric-coordinates.
Accessed: 2021-08-29.

[41] Interpolating in a triangle - Code Plea. https://codeplea.com/
triangular-interpolation. Accessed: 2021-09-04.

[42] Barycentric coordinates (GeoGebra demo). https://www.geogebra.org/m/
ZuvmPjmy. Accessed: 2021-08-29.

[43] Seung Joon Choi. CodePen: Barycentric coordinates. https://codepen.io/
erucipe/pen/gpBgpR. Accessed: 2021-03-10.

[44] CutTheKnot: Tool for barycentric coordinates. https://www.cut-the-knot.
org/Curriculum/Geometry/Barycentric.shtml. Accessed: 2021-07-27.

[45] Ching-Kuang Shene. Introduction to computing with geometry - Michigan Technolog-
ical University (course notes). https://pages.mtu.edu/~shene/COURSES/
cs3621/NOTES/. Accessed: 2021-08-05.

[46] Wikipedia pages on Bézier, B-Spline and NURBS curves. Bézier curve: https://en.
wikipedia.org/wiki/B%C3%A9zier_curve, B-Spline curve: https://en.
wikipedia.org/wiki/B-spline, NURBS curve: https://en.wikipedia.
org/wiki/Non-uniform_rational_B-spline. Accessed: 2021-09-06.

[47] Ian Shiach. Video lectures about Bézier and B-Spline curves (YouTube). Bézier
curves: https://youtu.be/2HvH9cmHbG4, B-Splines: https://youtu.be/
qhQrRCJ-mVg. Accessed: 2021-09-06.

[48] Official Node.js website. https://nodejs.org/en/. Accessed: 2021-08-05.

42

http://thomasmountainborn.com/transforms-2/
http://thomasmountainborn.com/TransformsPlayer/index.html
http://thomasmountainborn.com/TransformsPlayer/index.html
https://epiplexis.xyz/a/fxh/matrix_visualizer
https://epiplexis.xyz/a/fxh/matrix_visualizer
https://mathlets.org/mathlets/matrix-vector/
https://mathlets.org/mathlets/matrix-vector/
https://www.desmos.com/calculator/vkws7hybxc
https://www.desmos.com/calculator/vkws7hybxc
https://www.wolframalpha.com/examples/mathematics/geometry/geometric-transformations
https://www.wolframalpha.com/examples/mathematics/geometry/geometric-transformations
https://www.wolframalpha.com/examples/mathematics/geometry/geometric-transformations
https://observablehq.com/@infowantstobeseen/barycentric-coordinates
https://observablehq.com/@infowantstobeseen/barycentric-coordinates
https://codeplea.com/triangular-interpolation
https://codeplea.com/triangular-interpolation
https://www.geogebra.org/m/ZuvmPjmy
https://www.geogebra.org/m/ZuvmPjmy
https://codepen.io/erucipe/pen/gpBgpR
https://codepen.io/erucipe/pen/gpBgpR
https://www.cut-the-knot.org/Curriculum/Geometry/Barycentric.shtml
https://www.cut-the-knot.org/Curriculum/Geometry/Barycentric.shtml
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://youtu.be/2HvH9cmHbG4
https://youtu.be/qhQrRCJ-mVg
https://youtu.be/qhQrRCJ-mVg
https://nodejs.org/en/

[49] JSConf 2009: Talk by Ryan Dahl about his Node.js project. https://youtu.be/
ztspvPYybIY. Accessed: 2021-08-05.

[50] Mateusz Gajda. Why use Node.js for web development? scalability, performance
and other benefits of Node based on famous web applications. https://tsh.io/
blog/why-use-nodejs/. Accessed: 2021-08-10.

[51] Official Electron website. https://www.electronjs.org/. Accessed: 2021-08-
10.

[52] Craig Buckler. Understanding ES6 modules (sitepoint.com). https://www.
sitepoint.com/understanding-es6-modules/. Accessed: 2021-08-10.

[53] JavaScript modules (Mozilla Developers Network). https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules. Accessed:
2021-08-10.

[54] Node.js modules tutorial. https://www.tutorialsteacher.com/nodejs/
nodejs-modules. Accessed: 2021-08-10.

[55] Node package manager (npm) docs. https://docs.npmjs.com/about-npm.
Accessed: 2021-08-13.

[56] Why webpack (official website). https://webpack.js.org/concepts/
why-webpack/#birth-of-javascript-modules-happened-thanks-to-nodejs.
Accessed: 2021-08-29.

[57] Eamonn Boyle. Static types vs dynamic types. https://instil.co/blog/
static-vs-dynamic-types/. Accessed: 2021-08-17.

[58] Angular docs (about TypeScript). https://angular.io/guide/upgrade#
migrating-to-typescript. Accessed: 2021-08-17.

[59] Official TypeScript website. https://www.typescriptlang.org/. Accessed:
2021-08-05.

[60] New TypeScript features that improve the devel-
oper experience). https://www.sitepen.com/blog/
new-typescript-features-that-improve-the-developer-experience.
Accessed: 2021-08-17.

[61] Sass style rules (official docs). https://sass-lang.com/documentation/
style-rules. Accessed: 2021-08-17.

[62] Sass basics. https://sass-lang.com/guide. Accessed: 2021-08-17.

[63] Sass vs. SCSS. https://thesassway.com/
sass-vs-scss-which-syntax-is-better/. Accessed: 2021-08-17.

43

https://youtu.be/ztspvPYybIY
https://youtu.be/ztspvPYybIY
https://tsh.io/blog/why-use-nodejs/
https://tsh.io/blog/why-use-nodejs/
https://www.electronjs.org/
https://www.sitepoint.com/understanding-es6-modules/
https://www.sitepoint.com/understanding-es6-modules/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://www.tutorialsteacher.com/nodejs/nodejs-modules
https://www.tutorialsteacher.com/nodejs/nodejs-modules
https://docs.npmjs.com/about-npm
https://webpack.js.org/concepts/why-webpack/#birth-of-javascript-modules-happened-thanks-to-nodejs
https://webpack.js.org/concepts/why-webpack/#birth-of-javascript-modules-happened-thanks-to-nodejs
https://instil.co/blog/static-vs-dynamic-types/
https://instil.co/blog/static-vs-dynamic-types/
https://angular.io/guide/upgrade#migrating-to-typescript
https://angular.io/guide/upgrade#migrating-to-typescript
https://www.typescriptlang.org/
https://www.sitepen.com/blog/new-typescript-features-that-improve-the-developer-experience
https://www.sitepen.com/blog/new-typescript-features-that-improve-the-developer-experience
https://sass-lang.com/documentation/style-rules
https://sass-lang.com/documentation/style-rules
https://sass-lang.com/guide
https://thesassway.com/sass-vs-scss-which-syntax-is-better/
https://thesassway.com/sass-vs-scss-which-syntax-is-better/

[64] Materialize CSS website. https://materializecss.com/. Accessed: 2021-08-
30.

[65] Material Design website. https://material.io/design. Accessed: 2021-08-30.

[66] Materialize CSS: Using the SCSS version. https://materializecss.com/
sass.html. Accessed: 2021-08-30.

[67] Nabil Nalakath. Module bundlers in 5 minutes — the what, the why,
and the which (BetterProgramming). https://betterprogramming.pub/
javascript-module-bundlers-2a1e9307d057. Accessed: 2021-08-29.

[68] Official webpack website. https://webpack.js.org/. Accessed: 2021-08-05.

[69] Webpack Bundle Analyzer (npm). https://www.npmjs.com/package/
webpack-bundle-analyzer. Accessed: 2021-09-07.

[70] Canvas API (Mozilla Developer Network). https://developer.mozilla.org/
en-US/docs/Web/API/Canvas_API. Accessed: 2021-08-31.

[71] Three.js website. https://threejs.org/. Accessed: 2021-08-31.

[72] fabric.js website. http://fabricjs.com/. Accessed: 2021-08-31.

[73] MathJax website. https://www.mathjax.org/. Accessed: 2021-08-17.

[74] About GitHub Pages (official website). https://docs.github.com/en/
pages/getting-started-with-github-pages/about-github-pages#
publishing-sources-for-github-pages-sites. Accessed: 2021-08-30.

[75] gh-pages Node package on npm. https://www.npmjs.com/package/
gh-pages. Accessed: 2021-08-30.

[76] GitHub Pages Deploy & Domain (tutorial on YouTube by Traversy Media). https:
//youtu.be/SKXkC4SqtRk. Accessed: 2021-08-30.

[77] webpack-dev-server (webpack website). https://webpack.js.org/
configuration/dev-server/. Accessed: 2021-09-07.

[78] HtmlWebpackPlugin (webpack documentation). https://webpack.js.org/
plugins/html-webpack-plugin/. Accessed: 2021-09-07.

[79] EJS website. https://ejs.co/. Accessed: 2021-09-07.

[80] Dominik Gruntz. Java design: On the observer pattern. Java Report, 2002.

44

https://materializecss.com/
https://material.io/design
https://materializecss.com/sass.html
https://materializecss.com/sass.html
https://betterprogramming.pub/javascript-module-bundlers-2a1e9307d057
https://betterprogramming.pub/javascript-module-bundlers-2a1e9307d057
https://webpack.js.org/
https://www.npmjs.com/package/webpack-bundle-analyzer
https://www.npmjs.com/package/webpack-bundle-analyzer
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://threejs.org/
http://fabricjs.com/
https://www.mathjax.org/
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages#publishing-sources-for-github-pages-sites
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages#publishing-sources-for-github-pages-sites
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages#publishing-sources-for-github-pages-sites
https://www.npmjs.com/package/gh-pages
https://www.npmjs.com/package/gh-pages
https://youtu.be/SKXkC4SqtRk
https://youtu.be/SKXkC4SqtRk
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/plugins/html-webpack-plugin/
https://webpack.js.org/plugins/html-webpack-plugin/
https://ejs.co/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement

	Existing Work
	Literature Related to Computer Graphics Teaching
	Web-based Learning Material Covering Computer Graphics Topics

	Demos Created
	Introduction to Bézier Curves
	Bézier Curves and Bernstein Polynomials
	B-Spline Curves
	NURBS Curves
	Barycentric Coordinates

	Tech Stack and Tools Used
	Node.js and Node Package Manager (npm)
	Programming Language: TypeScript
	Website Stylesheets with SCSS
	Using Materialize for Website Styles
	Bundling Required Resources: Webpack
	Rendering the Demos Onto the Screen: p5.js
	Mathematical Notation in the Browser: MathJax
	Deployment: GitHub Pages

	Implementation Details
	Project Configuration Details
	Typescript Code Written for the Project

	Reflection
	Technical Aspects
	General Aspects

	Conclusion
	Summary
	Use Cases for the Web App
	Open Issues/Possible Further Work

	Bibliography

